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Abstract

We give a criterion for when the smallest regular cover of a chiral polytope P is
itself a polytope, using only information about the facets and vertex-figures of P.
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1 Introduction

Abstract polytopes are combinatorial objects that generalize convex polytopes. Every ab-
stract 3-polytope can be identified with a face-to-face tiling of a closed surface, though some
such tilings do not yield abstract 3-polytopes. More generally, an abstract n-polytope can
be thought of as a collection of abstract (n − 1)-polytopes glued together in a ‘nice’ way
that ensures that the resulting structure still resembles the incidence relation of a convex
polytope.

The study of symmetry is central in the theory of abstract polytopes. The most symmetric
polytopes are called regular, and there is a well-developed theory of regular polytopes; see [9]
for an extensive overview. Polytopes that have full symmetry under abstract rotations but
no symmetry by an abstract reflection are called chiral. Chiral polytopes have also been the
subject of much study, but they have proven much more difficult to pin down than regular
polytopes. Chiral polytopes were introduced in [14], building on earlier work of Coxeter
and others on chiral maps and honeycombs. Since then, many papers have investigated the
structure of chiral polytopes; see [1, 2, 6, 13] for a broad selection.

Every chiral polytope has a unique smallest regular polytope-like object that covers it.
Our goal is to determine when the smallest regular cover of a chiral polytope is itself a
polytope. (This is essentially Problem 3 in [13].) A partial answer is given in [11, Cor.
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7.5], covering the case where the facets or vertex-figures are regular. Here we will give an
answer for the case where the facets and vertex-figures are both chiral. Furthermore, our
characterization only uses information about the facets and vertex-figures; we do not need
to know any of the global structure of the chiral polytope in question.

2 Background

2.1 Polytopes

The basic notions of abstract polytopes can be found in [9] and chiral polytopes are described
in [14]. Here we review the necessary background.

Suppose P is a partially-ordered set with a unique minimal element F−1 and a unique
maximal element Fn. If the maximal chains of P all have the same length, then P is a graded
poset, where each element has a rank equal to 1 more than the maximum rank of all elements
it covers. In our treatment, we give the minimal element a rank of −1. If P also satisfies
the two conditions below, it is an (abstract) n-polytope:

(a) (Diamond condition): Whenever F < G and rank(G)− rank(F ) = 2, there are exactly
two elements H such that F < H < G.

(b) (Strong connectivity): Suppose F < G and rank(G) − rank(F ) ≥ 3. Then the poset
interval (F,G) := {H : F < H < G} has a connected Hasse diagram.

From now on, we will understand ‘polytope’ to mean ‘abstract polytope’.
Each element F of rank n− 1 in an n-polytope induces an (n− 1)-polytope; namely, the

poset [F−1, F ] := {H : F−1 ≤ H ≤ F}. We refer to this as a facet of P . (In some contexts,
‘facet’ can also refer to the element F itself, but at present we will not need to refer to those
elements separately.) Similarly, if v is an element of rank 0, then the vertex-figure at v is the
poset [v, Fn], which is also an (n− 1)-polytope. Finally, a medial section of P is a facet of a
vertex-figure of P (or indeed, a vertex-figure of a facet).

The maximal chains of a polytope are referred to as flags. If two flags differ only in
their face of rank i, then we say that the flags are i-adjacent, or simply adjacent. For every
i ∈ {0, . . . , n− 1}, each flag has a unique i-adjacent flag.

We say that P covers Q if there is a function π : P → Q that preserves the partial order,
the rank of each face, and such that whenever two flags of P are i-adjacent, so are their
images under π.

An automorphism of P is a bijection from P to itself that preserves rank and the partial
order. We denote the automorphism group of P by Γ(P). There is a natural action of Γ(P)
on the flags of P , and if this action is transitive, then P is called regular. In this case, the
automorphism group of P is a quotient of the string Coxeter group

Wn = ⟨r0, . . . , rn−1 | r2i = 1 for all i, (rirj)
2 = 1 for all |i− j| > 1⟩.

A regular polytope is called orientable (or directly regular) if every relator in Γ(P) has even
length in the generators ri. In this case, the rotation subgroup of the automorphism group,
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which consists of the words of even length in Γ(P), is a subgroup of index 2 in Γ(P). We
denote this group by Γ+(P).

A polytope P is chiral if the action of Γ(P) on the flags of P has two orbits such that
adjacent flags always lie in different orbits. The facets of a chiral polytope are all isomorphic
to some polytope K that is either chiral or directly regular, and the same is true of the
vertex-figures. The facets of the facets (and vertex-figures of the vertex-figures) must be
directly regular (see [14, Prop. 9]). When working with chiral polytopes, we assume that we
have chosen a base flag ; the form of the automorphism group for a chiral polytope depends
on the choice of base flag.

2.2 String C+-groups

For each n ≥ 1, let

W+
n = ⟨s1, . . . , sn−1 | (si · · · sj)2 = 1 for all i < j⟩.

Consider a group Γ = W+
n /M = ⟨σ1, . . . , σn−1⟩, where each σi is the image of si under the

natural projection. We define:
Γ0 = ⟨σ2, . . . , σn−1⟩

Γn−1 = ⟨σ1, . . . , σn−2⟩

Γ0,n−1 = ⟨σ2, . . . , σn−2⟩.

The group Γ is called a string C+-group if it satisfies a certain intersection condition (see [14,
Prop. 7]), but the following recursive definition is equivalent (see for example [5, Proposition
3.13]).

Definition 2.1. Γ = W+
n /M is a string C+-group if:

� n = 1 and |Γ| > 1, or

� Γ0 and Γn−1 are both string C+-groups and Γ0 ∩ Γn−1 = Γ0,n−1.

The group W+
n has an outer automorphism that sends each si to si defined by:

s1 = s−1
1

s2 = s21s2

si = si for i > 2.

Indeed, we can identify W+
n with the even-word subgroup of Wn by identifying each si with

ri−1ri, and the outer automorphism of W+
n is just conjugation by r0 in Wn. Given a quotient

Γ = ⟨σ1, . . . , σn−1⟩ of W+
n , we define

Γ = ⟨σ1, . . . , σn−1⟩,
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where σi is the image of si.
The automorphism group of a chiral polytope is a string C+-group. Similarly, the rotation

subgroup of a directly regular polytope is a string C+-group. Furthermore, we can build a
polytope from a string C+-group, and the result is either chiral or directly regular. In fact,
if Γ is a string C+-group, then it is the automorphism group of a chiral polytope if and only
if there is no automorphism of Γ mapping each σi to σi (see [14, Thm. 1(c)]).

More generally, if Γ is a quotient of W+
n but not a string C+-group, then we may never-

theless build something from it that will be somewhat like a polytope, such that the notions
of regularity and chirality still make sense.

2.3 Smallest regular covers and mixing

If G = ⟨g1, . . . , gn⟩ and H = ⟨h1, . . . , hn⟩, then their mix is defined as

G ⋄H = {(g1, h1), . . . , (gn, hn)} ⊆ G×H.

If P and Q are directly regular n-polytopes, then we define P ⋄Q to be the directly regular
polytope with rotation subgroup Γ+(P) ⋄ Γ+(Q). See [4] for more details.

Every chiral polytope has a unique smallest regular cover, which may or may not be a
polytope (see [12, Prop. 4.1].) If P is a chiral polytope with automorphism group Γ, then
the rotation subgroup of its smallest regular cover R is Λ = Γ⋄Γ. Then R will be a polytope
if and only if Λ is a string C+-group.

Our goal is to characterize those chiral polytopes P whose smallest regular cover is a
polytope. We recall the following:

Proposition 2.2. ([11, Cor. 7.5]) If P is a chiral polytope with regular facets or vertex-
figures, then its smallest regular cover is a polytope.

Thus, it suffices to concentrate on the case where P has chiral facets and vertex-figures.
We start with the following simple observation:

Proposition 2.3. Let P be a chiral polytope with chiral facets and vertex-figures, with au-
tomorphism group Γ, and let Λ = Γ ⋄ Γ. Then the smallest regular cover of P is a polytope
if and only if Λ0 ∩ Λn−1 ≤ Λ0,n−1.

Proof. Since the facets of the facets of a chiral polytope are regular, the facets of P are
chiral polytopes with regular facets. Thus, by Proposition 2.2, their smallest regular cover
is a polytope. The automorphism group of this smallest regular cover is Γn−1 ⋄ Γn−1, and
so it is a string C+-group. In fact, this just says that Λn−1 is a string C+-group. A dual
argument shows that Λ0 is a string C+-group. Then it follows that Λ is a string C+-group
if and only if Λ0 ∩ Λn−1 = Λ0,n−1, and the inclusion Λ0,n−1 ≤ Λ0 ∩ Λn−1 is obvious..

Finally, let us recall the notion of the chirality group of a polytope, as defined in [1]. If
P is a chiral polytope with automorphism group Γ (relative to a chosen base flag), then Γ
is naturally isomorphic to W+

n /M for some normal subgroup M of W+
n . Then the chirality

group of P is the kernel of the natural projection π : W+
n /M → W+

n /MM .
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Proposition 2.4. Let P be a chiral polytope with automorphism group Γ, and let Λ = Γ⋄Γ.
Then

X(P) = {γ ∈ Γ | (γ, 1) ∈ Λ}.

Proof. Note that (γ, 1) ∈ Λ if and only if there is some g = si1 · · · sik ∈ W+
n such that g

projects to γ in W+
n /M and g projects to 1 in W+

n /M . In other words, g ∈ M and thus
g ∈ MM . Thus, projecting g to γ in W+

n /M and then projecting γ to W+
n /MM must yield

1, and so (γ, 1) ∈ Λ if and only if γ ∈ X(P).

Note that if P has facets isomorphic to K, then X(K) naturally embeds into X(P) as:

X(K) = {γ ∈ Γn−1 | (γ, 1) ∈ Λn−1}.

Similarly, if the vertex-figures are isomorphic to L, then

X(L) = {γ ∈ Γ0 | (γ, 1) ∈ Λ0}.

Finally, if the medial sections are isomorphic to M, then

X(M) = {γ ∈ Γ0,n−1 | (γ, 1) ∈ Λ0,n−1}.

3 Main result

We are now ready for the main result.

Theorem 3.1. Let P be a chiral polytope with facets isomorphic to K, vertex-figures iso-
morphic to L, and medial sections isomorphic to M. Then the smallest regular cover of P
is a polytope if and only if X(K) ∩X(L) ≤ X(M).

Proof. First, note that

X(K) ∩X(L) = {γ ∈ Γn−1 | (γ, 1) ∈ Λn−1} ∩ {γ ∈ Γ0 | (γ, 1) ∈ Λ0}
= {γ ∈ Γ0 ∩ Γn−1 | (γ, 1) ∈ Λ0 ∩ Λn−1}
= {γ ∈ Γ0,n−1 | (γ, 1) ∈ Λ0 ∩ Λn−1},

where the last equality follows since Γ is a string C+ group. Recall that

X(M) = {γ ∈ Γ0,n−1 | (γ, 1) ∈ Λ0,n−1}.

Thus, if Λ0 ∩ Λn−1 ≤ Λ0,n−1, then X(K) ∩ X(L) ≤ X(M). In light of Proposition 2.3, it
remains to prove the converse.

Suppose that (γ, β) ∈ Λ0 ∩ Λn−1. In particular, β ∈ Γ0 ∩ Γn−1, and since Γ is a string
C+-group, it follows that β ∈ Γ0,n−1. Then there is an element α of Λ0,n−1 such that
(γ, β)α = (γ′, 1) for some γ′. Furthermore, (γ′, 1) ∈ Λ0 ∩ Λn−1, from which it follows that
γ′ ∈ Γ0,n−1. Thus (γ′, 1) ∈ X(K) ∩X(L) which, by assumption, is contained in X(M). So
(γ′, 1) ∈ Λ0,n−1, and since α ∈ Λ0,n−1, so is (γ′, 1)α−1 = (γ, β), completing the proof.
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The beauty of Theorem 3.1 is that it does not depend on P per se – merely on the type
of its facets and vertex-figures. Let us consider several examples and corollaries.

Remark 3.2. Note that Theorem 3.1 does not require that the facets and vertex-figures of
P both be chiral. If, for example, the facets K are regular, then X(K) is trivial, and so the
condition of the theorem is trivially satisfied, agreeing with Proposition 2.2.

Corollary 3.3. Suppose P is a chiral polytope with automorphism group Γ, facets isomorphic
to K, and vertex-figures isomorphic to L. If the medial sections of P are regular, then the
smallest regular cover of P is a polytope if and only if X(K)∩X(L) (viewed as subgroups of
Γ) has trivial intersection with Γ0,n−1.

Corollary 3.4. If P is a chiral 4-polytope with automorphism group Γ, facets isomorphic to
K, and vertex-figures isomorphic to L, then the smallest regular cover of P is a polytope if
and only if no power of σ2 is contained in X(K) ∩X(L).

Example 3.5. The five families of chiral 4-polytopes with chiral facets (and vertex-figures)
in [7, Table 4] have a power of σ2 in X(K) ∩X(L) (see [7, Prop. 11]), and so the smallest
regular cover of each one is not a polytope.

A chiral polytope P is called totally chiral if X(P) = Γ (see [1]). The following result is
immediate.

Proposition 3.6. If P has totally chiral facets and vertex-figures, then its smallest regular
cover is a polytope if and only if it has totally chiral medial sections.

Finally, we note that Theorem 3.1 guarantees that certain choices of facets for a chiral
polytope will guarantee that the smallest regular cover is a polytope.

Corollary 3.7. Suppose that K is a chiral polytope with automorphism group Γ. If X(K)
has trivial intersection with Γ0, then the smallest regular cover of every chiral polytope with
facets isomorphic to K is a polytope.

Example 3.8. The chiral polyhedra {4, 4}(b,c) with bc(b − c) ̸= 0 all have chirality groups
that trivially intersect ⟨σ2⟩. (Indeed, all such polyhedra cover the regular map {4, 4}(1,0), and
so no power of σ2 can be present in the chirality group.) Thus, all chiral polytopes with such
facets have a smallest regular cover that is a polytope.

4 Minimal regular covers

A regular polytope R is said to be a minimal regular cover of the polytope P if the only
regular cover of P that is covered by R is R itself. Whenever the smallest regular cover of P
is a polytope, then this is the unique minimal regular cover of P [11, Prop. 3.16]. Otherwise,
a polytope may have multiple minimal regular covers; for example, see the Tomotope [10].
Indeed, it seems likely that every polytope whose smallest regular cover is not a polytope
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has multiple minimal regular covers. Problem 4 in [13] asks for a characterization of chiral
polytopes with a unique minimal regular cover.

Let us look at an example inspired by Example 3.5. Consider the chiral polytope P
whose automorphism group is

Γ = ⟨σ1, σ2, σ3 | σ6
1 = σ9

2 = σ6
3 = 1, (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1, σ2σ
2
1 = σ2

1σ
4
2, σ

2
3σ2 = σ4

2σ
2
3⟩.

This is a polytope with 648 flags, and its smallest regular cover R, with 1944 flags, is not
a polytope. Clearly, any regular polytope Q that covers R such that |Q|/|R| is a prime
number will be a minimal regular cover of P .

Now, let K be a facet of R, and let T be its trivial extension, which has rotation subgroup

⟨σ1, σ2, σ3 | σ6
1 = σ9

2 = σ2
3 = 1, (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1, (σ1σ
−2
2 )2 = σ1σ

2
2σ1(σ1σ

−1
2 σ1)

2 = 1⟩.

Let Q = R ⋄ T . Using the GAP package RAMP [3, 8], we confirmed that Q is a regular
polytope with 5832 flags, making it a 3-fold cover of R and thus a minimal regular cover of
P . Similarly, if we mix R with the dual of T , which has group

⟨σ1, σ2, σ3 | σ2
1 = σ9

2 = σ6
3 = 1, (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1, (σ−1
3 σ2

2)
2 = σ2σ

2
3σ2(σ

−1
3 σ2σ

−1
3 )2 = 1⟩,

then we obtain another 3-fold cover of R, and these two covers are non-isomorphic. So P
does not have a unique minimal regular cover. We conjecture that the situation is similar
with all of the chiral polytopes mentioned in Example 3.5.
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